edexcel

Mark Scheme (Results)

Summer 2016

Pearson Edexcel

International Advanced Level
in Chemistry (WCH04) Paper 01
General Principles of Chemistry I

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at www.edexcel.com.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.
www.edexcel.com/contactus

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2012
Publications Code 46664_MS*
All the material in this publication is copyright
© Pearson Education Ltd 2016

General Marking Guidance

- \quad All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.
- Mark schemes will indicate within the table where, and which strands of QWC, are being assessed. The strands are as follows:
i) ensure that text is legible and that spelling, punctuation and grammar are accurate so that meaning is clear
ii) select and use a form and style of writing appropriate to purpose and to complex subject matter
iii) organise information clearly and coherently, using specialist vocabulary when appropriate

Using the Mark Scheme

Examiners should look for qualities to reward rather than faults to penalise. This does NOT mean giving credit for incorrect or inadequate answers, but it does mean allowing candidates to be rewarded for answers showing correct application of principles and knowledge. Examiners should therefore read carefully and consider every response: even if it is not what is expected it may be worthy of credit.

The mark scheme gives examiners:

- an idea of the types of response expected
- how individual marks are to be awarded
- the total mark for each question
- examples of responses that should NOT receive credit.
/ means that the responses are alternatives and either answer should receive full credit.
() means that a phrase/word is not essential for the award of the mark, but helps the examiner to get the sense of the expected answer.
Phrases/words in bold indicate that the meaning of the phrase or the actual word is essential to the answer.
TE/TE/cq (error carried forward) means that a wrong answer given in an earlier part of a question is used correctly in answer to a later part of the same question.

Candidates must make their meaning clear to the examiner to gain the mark. Make sure that the answer makes sense. Do not give credit for correct words/phrases which are put together in a meaningless manner. Answers must be in the correct context.

Quality of Written Communication

Questions which involve the writing of continuous prose will expect candidates to: - write legibly, with accurate use of spelling, grammar and punctuation in order to make the meaning clear

- select and use a form and style of writing appropriate to purpose and to complex subject matter
- organise information clearly and coherently, using specialist vocabulary when appropriate.
Full marks will be awarded if the candidate has demonstrated the above abilities. Questions where QWC is likely to be particularly important are indicated (QWC) in the mark scheme, but this does not preclude others.

Section A (multiple choice)

Question Number	Correct Answer	Reject	Mark
$\mathbf{1}$	C		$\mathbf{(1)}$

Question Number	Correct Answer	Reject	Mark
$\mathbf{2}$	D		$\mathbf{(1)}$

Question Number	Correct Answer	Reject	Mark
3(a)	B		(1)

Question Number	Correct Answer	Reject	Mark
$\mathbf{3 (b)}$	A		$\mathbf{(1)}$

Question Number	Correct Answer	Reject	Mark
4(a)	C		(1)

Question Number	Correct Answer	Reject	Mark
4(b)	C		(1)

Question Number	Correct Answer	Reject	Mark
4(c)	A		(1)

Question Number	Correct Answer	Reject	Mark
4(d)	D		(1)

Question Number	Correct Answer	Reject	Mark
4(e)	D		(1)

Question Number	Correct Answer	Reject	Mark
$\mathbf{5}$	C		$\mathbf{(1)}$

Question Number	Correct Answer	Reject	Mark
$\mathbf{6 (a)}$	C		$\mathbf{(1)}$

Question Number	Correct Answer	Reject	Mark
$\mathbf{6 (b)}$	A		(1)

Question	Correct Answer	Reject	Mark
Number	C		$\mathbf{(1)}$
$\mathbf{7 (a)}$	C		

Question Number	Correct Answer	Reject	Mark
$\mathbf{7 (b)}$	B		$\mathbf{(1)}$

Question Number	Correct Answer	Reject	Mark
$\mathbf{8 (a)}$	D		$\mathbf{(1)}$

Question Number	Correct Answer	Reject	Mark
$\mathbf{8 (b)}$	B		$\mathbf{(1)}$

Question Number	Correct Answer	Reject	Mark
$\mathbf{9 (a)}$	A		$\mathbf{(1)}$

Question Number	Correct Answer	Reject	Mark
9(b)	D		(1)

Question Number	Correct Answer	Reject	Mark
$\mathbf{1 0 (a)}$	C		$\mathbf{(1)}$

Question Number	Correct Answer	Reject	Mark
$\mathbf{1 0 (b)}$	D		$\mathbf{(1)}$

Section B

Question Number	Acceptable Answers	Reject	Mark
11(a)	$\left(K_{a 1}=\right)\left[\mathrm{H}_{3} \underline{\mathrm{O}}^{+}(\mathrm{aq})\right]\left[\mathrm{HCO}_{3}^{3}-(\mathrm{aq})\right]$ (1) $\begin{gathered} {\left[\mathrm{H}_{2} \mathrm{CO}_{3}(\mathrm{aq})\right]} \\ \left(\mathrm{Ka}_{\mathrm{a} 2}=\right) \\ \mathbf{(1)} \end{gathered} \frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})\right]\left[\mathrm{CO}_{3}^{2-}-(\mathrm{aq})\right]}{\left[\mathrm{HCO}_{3}^{-}(\mathrm{aq})\right]}$ ALLOW $\mathrm{H}^{+}(\mathrm{aq})$ for $\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})$ IGNORE state symbols, even if incorrect	$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]^{2}$ numerator $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]^{2}$ numerator	(2)

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 1 (b) (i i)}$	$\left(\mathrm{pH}=-\log 2.04 \times 10^{-4}=\right) 3.69 / 3.7$	$\mathrm{pH}=4$	(1)

	TE on answer to (b)(i), provided $\mathrm{pH}<7$		
	$\mathrm{pH}=3.19 / 3.2$ from a $\left[\mathrm{HCO}_{3}{ }^{-}\right]$value of $6.46 \times 10^{-4}(\mathrm{~mol} \mathrm{dm}$ ALLOW any SF except 1 SF	$\mathrm{pH}=3$	

Question Number	Acceptable Answers	Reject	Mark
*11(b)(iii)	Max 2 if HA and A^{-}used for $\mathrm{H}_{2} \mathrm{CO}_{3}$ Any THREE from: Assumption 1 $\left[\mathrm{H}_{2} \mathrm{CO}_{3}\right]_{\text {equilibrium }}=\left[\mathrm{H}_{2} \mathrm{CO}_{3}\right]_{\text {initial }}$ OR The dissociation of $\mathrm{H}_{2} \mathrm{CO}_{3} /$ the acid is negligible OR 2.04×10^{-4} is (very) small compared to the initial concentration of $\mathrm{H}_{2} \mathrm{CO}_{3} / 0.100$ (hence a valid assumption), or reverse argument Assumption 2 $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\left[\mathrm{HCO}_{3}^{-}\right] \quad \text { OR } \quad\left[\mathrm{H}^{+}\right]=\left[\mathrm{HCO}_{3}^{-}\right]$ OR Negligible H^{+}from (the dissociation of) water / H^{+} only from $\mathrm{H}_{2} \mathrm{CO}_{3}$ Assumption 3 Negligible dissociation of $\mathrm{HCO}_{3}^{-} /$ $\mathrm{HCO}_{3}{ }^{-}$doesn't (significantly) dissociate further OR $K_{\mathrm{a} 2}$ very much smaller than $K_{a 1}$ ALLOW Stage 2 does not occur (significantly) Assumption 4 Measurements at 298 K / standard temperature IGNORE References to the concentration of water References just to 'standard conditions'		(3)

Question Number	Acceptable Answers	Reject	Mark	
$\mathbf{1 1 (c)}$				

	ALLOW Two vertical sections not at $10 / 20 \mathrm{~cm}^{3}$ scores (1) if M2 and $\mathbf{M 3}$ not awarded		

(Total for question 11 = 13 Marks)

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 2 (a) (i)}$	Effervescence / bubbles / fizzing IGNORE gas evolved / temperature increase		(1)

Question Number	Acceptable Answers	Reject	Mark
*12(a)(ii)	A statement that entropy is positive needs to be made once only and can be used to award M1 and M2 Penalise omission of statement that entropy is positive once only M1 Entropy (of the system) positive and solid and liquid reactants form (a solid, a liquid and) a gas ALLOW gas formed / gas is a product (1) M2 Entropy (of the system) positive and EITHER 3 moles $\rightarrow 4$ moles OR more moles of products (than reactants) ALLOW 'molecules' for moles OR More ways of distributing energy OR	If entropy of system is negative / decreases scores (0) particles	(2)

	More ways of distributing quanta (1)		

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 2 (b) (i)}$	ΣS^{\ominus} (reactants $\left.)=(31.8)+3(2 \times 158.6)=\right)$ $+983.4 \mathrm{Jol}^{-1} \mathrm{~K}^{-1}$		(2)
(1)	$\Delta S_{\text {system }}=(291.7-983.4=)$ $-691.7 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1} /-0.6917 \mathrm{~kJ} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$ (1) Correct answer no working scores (2) If monoclinic sulfur is used (32.6) final answer $=$ -692.5 scores (1)		

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 2 (b) (i i)}$	ΔS^{\ominus} surroundings $=(-\Delta \mathrm{H} \div \mathrm{T})=--1209000 \mathrm{~J} \mathrm{~mol}^{-1}$ (1)		(2)
	(298 K $=(4057.04698)$ (1) Correct answer without working scores 2		

Question Number	Acceptable Answers	Reject	Mark
12(b)(iii)	$\begin{aligned} & \Delta S_{\text {total }}^{\ominus}=\Delta S_{\text {system }}^{\ominus}+\Delta S_{\text {surroundings }} \\ & \Delta S_{\text {total }}=\text { ans }(\mathrm{b})(\mathrm{i})+\text { ans }(\mathrm{b})(\mathrm{ii}) \\ & \quad=-691.7+4057 \\ & \quad=+3365.3 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1} /+3.3653 \mathrm{~kJ} \mathrm{~mol}^{-1} \mathrm{~K}^{-1} \end{aligned}$ TE on answers from (b)(i) and (b)(ii)		(1)

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 2 (b) (i v) ~}$	Marking points may be in any order Mark all 3 points independently		(3)
	M1: $\Delta S_{\text {surroundings becomes less positive / smaller }}$ (magnitude) / decreases (in magnitude) (because you are dividing $-\Delta H$ by a larger T) (1)		

	$\Delta S^{\ominus}{ }_{\text {system }} / \Delta H_{\mathrm{f}} / \Delta H$ is not (significantly) affected (by an increase in temperature) (1)	Becomes negative	
	M3:		
$(\mathrm{So}) \Delta S^{\ominus}$ total			

Question Number	Acceptable Answers	Reject	Mark
12(c)(i)	Accept reverse arguments throughout M1 sulfates get less soluble as you descend Group 2 ALLOW barium sulfate is less soluble than magnesium sulfate M2 (total) entropy / $\Delta \mathrm{S}^{\ominus}{ }_{\text {total }}$ gets more negative/ less positive as you go from MgSO_{4} to BaSO_{4} ALLOW $\Delta \mathrm{S}^{\ominus}$ total is positive for MgSO_{4} and negative for BaSO_{4} (1) IGNORE Re-stating the numerical entropy values No TE on incorrect trend	References to exothermic / endothermic Just "decreases", "gets smaller"	(2)

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 2 (c) (i i)}$	$(K=$ inv $\ln (20 / 8.31)=) 11.098=11$		(1)
	IGNORE any units		
ALLOW any SF except 1SF			

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 3 (a)}$	blue-black / blue / black (complex) colour would never form OR no colour change would be seen OR no (excess) iodine would form OR no iodine left to react with starch OR iodine would be reduced back to iodide OR iodine would react with hydrogensulfate as soon as it forms	Any other colours	(1)
	IGNORE Just hydrogensulfate would not get used up		

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 3 (b)}$	So the kinetics of reaction 1 can be studied OR iodine complex colour would form too soon / solution would go blue-black too soon IGNORE reference to RDS	(1)	

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 3 (c) (i)}$	Because temperature affects reaction rate		(1)
	ALLOW Increase in temperature increases reaction rate' or reverse argument for decreasing temperature OR To keep the rate of reaction the same OR So no change in rate constant IGNORE references to validity, reliability or 'fair test' or so temperature is not a variable		

Question Number	Acceptable Answers	Reject	Mark
13(c)(ii)	M1: Completed table with value 1.11 (1) M2: Axes correct with sensible, linear scales so at least half of the graph paper on both axes is covered (1) ALLOW even if graph scales do not start at $(0,0)$ M3: Axes labels fully correct with units (1) ALLOW $1000 \mathrm{t} / \mathrm{s}^{-1}$ or $1000 / \mathrm{t} / \mathrm{s}^{-1}$ on y -axis ALLOW volume / cm^{3} on x-axis M4: All points plotted correctly (± 1 small square) (1) Award M4 TE on the table value at $2 \mathrm{~cm}^{3}$ Do not penalise missing crosses/ circles if line is correct M5: Straight line drawn through $(\mathbf{0}, \mathbf{0})$ and through all points except anomalous result at $8 \mathrm{~cm}^{3}$ (1) Exemplar:	Axes reversed OR decreasing scale	(5)

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 3 (c) (i i i) ~}$	burette / (graduated) pipette	measuring cylinder teat pipette volumetric flask syringe	(1)

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 3 (c) (i v) ~}$	volume (of iodate(V) ions) and concentration are (directly) proportional	(1)	
	IGNORE Concentration varies as volume varies volume is proportional to rate volume is proportional to number of moles		

Question Number	Acceptable Answers	Reject	Mark
13(c)(v)	M1 First order Note: this mark is independent of the graph drawn M2 because the graph is a straight line (through the origin) OR rate is proportional to $\left[\mathrm{IO}_{3}^{-}\right]$/ rate is proportional to volume of IO_{3}^{-} OR as concentration/volume increases by (factor of) 2 , rate increases by 2 (or any other numbers, including ' x ') OR rate increases linearly (with concentration) ALLOW Gradient of line is constant M2 dependent on M1	Just `graph is a best fit line' References to constant half-life	(2)
Question Number	Acceptable Answers	Reject	Mark
:---	:---	:---	:---:
$\mathbf{1 3 (c) (v i)}$	(repeat the experiment with) double the concentration of $\mathrm{HSO}_{3}-$ and the rate doubles (keeping the iodate(V) concentration constant) OR Any other ratio i.e. any change to the concentration having the same effect on the rate	refs to the gradient doubling	(1)
ALLOW Vary the concentration and the effect on the rate is the same OR Methods involving plotting concentration/time graph and measuring constant half-life			
Question Number	Acceptable Answers	Reject	Mark
:---:	:---:	:---:	:---:
13(c)(vii)	M1 rate $=\mathrm{k}\left[\mathrm{IO}_{3}^{-}\right]\left[\mathrm{HSO}_{3}^{-}\right]$ ALLOW $\begin{equation*} \mathrm{r}=\mathrm{k}\left[\mathrm{IO}_{3}{ }^{-}\right]\left[\mathrm{HSO}_{3}^{-}\right] \tag{1} \end{equation*}$ TE on order wrt $\mathrm{IO}_{3}{ }^{-}$given in part (v) M2 $\mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$ ALLOW the units in any order (1) TE on candidate's stated rate equation in M1 e.g. if rate $=k\left[\mathrm{HSO}_{3}{ }^{-}\right]$, then award $\mathbf{M 2}$ as TE for units of s^{-1}	Round brackets	(2)
Question Number	Acceptable Answers	Reject	Mark
:---	:---	:---	:---
$\mathbf{1 3 (d) (i)}$	(measure the) time taken (for the blue-black colour to appear) and temperature	(1)	
	ALLOW measure the rate and temperature IGNORE references to $\ln k$ and $1 / T$		
Question Number	Acceptable Answers	Reject	Mark
:---:	:---:	:---:	:---:
13(d)(ii)	M1		(6)
	Temperature converted to kelvin		
	ALLOW		
	Kelvin given in (i) (1)		
	COMMENT		
	Only M1 can be transferred from (i) to (ii).		
	Nothing can be credited from (ii) to (i)		
	M2 The vertical axis should be In rate / In $1 / \mathrm{t}$ ALLOW $\ln k$ (1)	1/T	
	M3	1/t	
	The horizontal axis should be $1 / T$ (1)	1/time	
	M4		
	Straight line (with a negative gradient) (1)		
	ALLOW		
	M1, M2, M3, M4 shown on a sketch graph		
	M5		
	Any mention of gradient (of the line) (1)		
	M6		
	States that: $E_{\mathrm{a}}=-$ gradient $\times R$		
	NB Negative sign must be shown or mentioned specifically		
	NOTE:		
	Plot "In rate against/vs 1/T" scores M2 and M3		
	Plot "1/T against/vs In rate" does not score either M2 or M3		
	If axes clearly the wrong way round max (4) ie only marks M1, M4, M5 and M6 are possible		

Section C

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 4 (a)}$	M1 LiAlH4/lithium aluminium hydride/ lithium tetrahydridoaluminate((III))/ NaBH $_{4} /$ sodium borohydride/ sodium tetrahydridoborate((III)) (1)	(3) M2 $4([\mathrm{H}])$ (1)	If another product e.g. water is given in the equation
	M3 CH3CHOHCHOHCH		
OR Correct displayed (or skeletal) formula (1)			

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 4 (b)}$	(turns from yellow-green to) colourless / yellow-green colour disappears/fades	just "colour change"	(1)
IGNORE bubbles	colour change with incorrect starting colour		

Question Number	Reject	Mark	
$\mathbf{1 4 (c) (i)}$	butane-2,3-diol and because it has hydrogen bonds (between the molecules)	hydrogen bonding to water	(1)
If other intermolecular forces listed then it must be clear that only butane-2,3-diol has hydrogen bonds	Ignore References to intramolecular hydrogen bonding		

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 4 (c) (i i)}$	Both molecules can form hydrogen bonds with water		(1)

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 4 (d)}$	Mark M2 and M1 independently	(1) isomerism scores (0)	(2)
	M1 IGtical (isomerism) IGNORE stereoisomers M2 (molecule contains) two chiral carbon atoms OR a chiral carbon / a carbon with four different groups attached / chiral centre OR molecule exists as non-superimposable mirror images OR exists as a pair of enantiomers ALLOW chiral molecule	..four different atoms / molecules attached.	

Question Number	Acceptable Answers	Reject	Mark
14(e)(i)	REAGENT propanoyl chloride / $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COCl} / \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COCl}$ displayed / structural / skeletal formulae COMMENT ALLOW propanyl chloride (1) Marks 2 and 3 are independent of the reagent mark Any two differences from: reaction irreversible/not an equilibrium / goes to completion (1) IGNORE references to yield OR Hydrogen chloride / HCl produced (instead of water) (1) OR reaction faster / does not need be heated / does not need acid/catalyst / more exothermic / more vigorous (1) IGNORE references to chloride as a leaving group NOTE: ALLOW propanoic anhydride / $\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CO}\right)_{2} \mathrm{O} /$ $\left.\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{CO}\right)_{2} \mathrm{O}$ for reagent mark and Propanoic acid produced(instead of water)	propyl chloride acyl chloride Hydrochloric acid	(3)

Question Number	Acceptable Answers	Reject	Mark
14(e)(ii)	IGNORE bond angles and bond lengths in all diagrams Structural / displayed formulae unless no skeletal formula Correct diagram with two ester groups = (2) M1 for both ester groups shown M2 for the rest of the molecule correct ALLOW 1 mark for a fully-correct structure with only 1 ester bond show i.e. ALLOW 1 mark for a fully-correct structure using displayed / structural formula only		(2)

Question	Acceptable Answers				Reject	Mark
14(f)	Molecule	```Peak /(cm- 1)```	Bond		Individual values Additional wavenumbers or ranges	(2)
	butanedione	1700-1680	$\mathrm{C}=0$	(1)		
	butane-2,3diol	3750-3200	$\mathrm{O}-\mathrm{H}$	(1)		
	ALLOW (if neither mark awarded) 1 mark for wavenumbers identified with correct molecules					

Question Number	Acceptable Answers	Reject	Mark
*14(g)	IGNORE TMS Peak at Chemical shift $\delta=0 \mathrm{ppm}$ M1 Three (different) proton / hydrogen environments OR Three sets of peaks shown on the spectrum (1) M2 One singlet and one triplet and one quartet only OR shown on diagram (1) M3 " $n+1$ " rule correctly applied to at least one peak e.g. quartet formed because 3 adjacent protons/hydrogens. (1) M4 (Area ratios of peaks) is 3:2:1 and related to $\mathrm{CH}_{3}: \mathrm{CH}_{2}: \mathrm{COOH}$ OR shown on molecular structure Note that the word 'ratio' or the mathematical symbol as above is required (1) M5 (Chemical shift values, $\delta \mathrm{ppm}$) $\begin{aligned} & \mathrm{COOH}=10.0-12.0 ; \\ & \mathrm{CH}_{2}=1.8-3.0 ; \\ & \mathrm{CH}_{3}=0.1-1.9 \end{aligned}$ OR shown on diagram as any peaks centred at these chemical shifts ALLOW		(5)

	individual chemical shift values within the ranges (1)		

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 4 (h)}$	Radio waves	In combination with any other radiation	1

Total for question 14 = 21 Marks)
TOTAL FOR SECTION C = 21 MARKS

TOTAL FOR PAPER $=90$ MARKS

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London WC2R ORL

